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We consider ad-dimensional crystal with an arbitrary harmonic interaction and an anharmonic on-site
potential, with a stochastic Langevin heat bath at each site. We develop an integral formalism for the correla-
tion functions that is suitable for the study of their relaxation(time decay) as well as their behavior in space.
Furthermore, in a perturbative analysis, for the one-dimensional system with weak coupling between the sites
and small quartic anharmonicity, we investigate the steady state and show that Fourier’s law holds. We also
obtain an expression for the thermal conductivity(for arbitrary next-neighbor interactions) and give the tem-
perature profile in the steady state.

DOI: 10.1103/PhysRevE.70.046105 PACS number(s): 05.70.Ln, 05.40.2a, 05.45.2a, 44.10.1i

I. INTRODUCTION

We are surrounded by phenomena involving nonequilib-
rium processes, but our understanding of such systems—i.e.,
the number of models that permit detailed calculations—is
very limited. In particular, a simple way of finding the prop-
erties in the steady states is unknown: e.g., a rigorous deri-
vation of the(phenomenological) Fourier’s law from a mi-
croscopic anharmonic Hamiltonian model has not been
established up to now(see[1,2] for a review). It makes the
analysis of simple dynamical models describing nonequilib-
rium processes a problem of interest.

A commonly studied microscopic model is the Hamil-
tonian chain(or its d-dimensional version) of N interacting
oscillators coupled to heat baths at each site or at the bound-
aries only and its anharmonic version with small quartic on-
site interactions.

For the harmonic case of the model with thermal reser-
voirs at the boundaries, the covariance of the stationary state
was calculated in[3] a long time ago. There, it is shown that
the heat current is independent of the length of the chain, and
so Fourier’s law does not hold. The temperature profile is
also computed in[3]: the temperature is essencially constant
in the interior of the chain, but decreases exponentially close
to the hotter bath and increases close to the opposite end. I.e.,
the profile has the lowest temperature near the hottest reser-
voir and the highest temperature near the coldest reservoir.
For the anharmonic case, there are interesting and recent
results. The existence of steady states is proved in[4] and the
positivity of entropy production in[5]. Numerical results
strongly suggest that Fourier’s law holds in such a case[6,7],
but in the opposite direction, a perturbative analysis[8]
shows that the heat current does not depend on the size of the
system. Also in the perturbative study[8], as in the harmonic
case[3], the temperature profile(discarding the exponential
decay in the bulk of the chain) is in the “wrong” way: the
hottest temperature is near the coldest bath and vice versa. In

short, it is unclear whether Fourier’s law holds or not in such
anharmonic models. It is worth recalling that other results
also indicate that the opinion that the sole anharmonicity of
the on-site potential shall ensure normal heat conductivity in
some commonly used models is wrong[9].

The harmonic crystal model with next-neighbor interac-
tions and a heat bath at each site has been recently analyzed
in [10]. It is proved, for a uniquely fixed temperature profile
leading to the steady state(given the temperatures at the
boundaries), that the heat current satisfies Fourier’s law. For
the case of more intricate interactions(intense and beyond
next-neighbor sites), for a chain with some few sites, some
results presented in[11] indicate that there is a “strange” heat
flux in the harmonic network(and the authors claim that the
results persist under weak anharmonic perturbations): inside
the chain, the direction of the heat fluxes cannot(in general)
be supposed from the temperature of the heat baths.

In the present paper, also with the aim of studying the
dynamics of simple microscopic models in order to under-
stand properties of nonequilibrium systems, we study the an-
harmonic version of this crystal with a stochastic Langevin
heat bath at each site(model named as crystal with self-
consistent reservoirs). We describe an approach and obtain
an integral formalism suitable for the study of the correlation
functions (of the d-dimensional system with quite general
interactions). Furthermore, using perturbative calculations,
for a weak coupling between the sites and a weak anhar-
monic potential, we show(for the one-dimensional system)
that Fourier’s law still holds. That is, we show(at least up to
first order in the perturbative computation) that Fourier’s law
is valid for this microscopic anharmonic Hamiltonian model.
We also obtain an expression for the thermal conductivity
(for next-neighbor interactions which may arbitrarily change
along the chain) and give the temperature profile in the
steady state. For the simpler case of next-neighbor interac-
tions constant along the chain, our results(considering the
anharmonic model) coincide with those of the harmonic case
recently described in[10].

The rest of the paper is organized as follows. In Sec. II we
present the model and some expressions for the energy cur-
rent. The integral formalism for the correlation functions is
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developed in Sec. III. In Sec. IV, in a perturbative computa-
tion, we analyze the energy current in the steady state and
Fourier’s law. In Sec. V we argue about the reliability of the
perturbative results and present some concluding remarks.

II. MODEL AND INITIAL CONSIDERATIONS

Let us introduce the model to be analyzed here and some
expressions for the energy current. We consider the stochas-
tic Langevin dynamics of an anharmonic crystal—i.e., a sca-
lar field lattice model with unbounded spin variables in a
d-dimensional lattice space boxL,Zd, with a stochastic
heat bath at each site. Precisely, we take a system ofN os-
cillators with the Hamiltonian

Hsq,pd = o
j=1

N
1

2
fpj

2 + Mqj
2g +

1

2 o
jÞl=1

N

qlJljqj + o
j=1

N

lPsqjd,

s1d

where M .0, P gives the anharmonic on-site perturbation
[e.g.,Psqjd=qj

4], and we consider the time evolution given
by the stochastic differential equations

dqj = pjdt, j = 1, . . . ,N,

dpj = −
]H

]qj
dt − zpjdt + g j

1/2dBj, j = 1, . . . ,N, s2d

whereBj are independent Wiener processes—i.e.,dBj /dt are
independent white noises—z is the heat bath coupling, and
g j =2zTj, whereTj is the temperature of thej th heat bath.

To describe the energy current in the system, we write the
local energy of the spin(oscillator) j as

Hjsq,pd =
1

2
pj

2 + Us1dsqjd +
1

2o
lÞ j

Us2dsqj − qld, s3d

where the expression forUs1d andUs2d follows immediately
from Eq. (1) ando j=1

N Hj =H. Then, we have

KdHjstd
dt

L = kRjstdl − kF j, − F j.l, s4d

where k·l denotes the expectation with respect to the noise
distribution and

kRjstdl = zsTj − kpj
2ld s5d

gives the energy flux from thej th reservoir to thej th site.
The energy current inside the system is given byF j, where

F j, = o
l. j

¹ Us2dsqj − qld
pj + pl

2
,

F j. = o
l, j

¹ Us2dsql − qjd
pl + pj

2
. s6d

In particular, in the steady state we havekdHjstd /dtl=0. We
will turn to these expressions to discuss Fourier’s law later.

III. INTEGRAL FORMALISM FOR THE CORRELATION
FUNCTIONS

For convenience, we introduce the phase-space vectorf
=sq,pd with 2N coordinates and write the equation for the
dynamics(2) as

ḟ = − Af − lP8sfd + sh, s7d

whereA=sA0+Jd ands are 2N32N matrices given by

A0 = S 0 − I

M G
D, J = S0 0

J 0
D, s = S0 0

0 Î2GT D . s8d

I above is the unitN3N matrix,J is theN3N matrix for the
two site interactionJlj [see Eq.(1)], andM, G, andT are
diagonal N3N matrices: M jl =Md jl , G jl =zd jl , and T jl
=Tjd jl . Here h are independent white noises,P8sfd is a
2N31 matrix with P8sfd j =0 for j =1, . . . ,N, and

P8sfdi =
dPsfi−Nd

dfi−N
for i = N + 1, . . . ,2N. s9d

To describe the dynamics we first consider the system
without the couplingJ among the sites and without the an-
harmonic perturbationsl=0d (interactions which we include
in a second step). Then the(straightforward) solution of Eq.
(7) above withJ;0, l=0 is the Ornstein-Uhlenbeck process
given by

fstd = e−tA0
fs0d +E

0

t

dse−st−sdA0
shssd. s10d

For simplicity we takefs0d=0. The covariance of this
Gaussian process evolves as

kfstdfssdl0 ; Cst,sd =He−st−sdA0Css,sd, t ù s,

Cst,tde−ss−tdA0T

, t ø s,
J s11d

Cst,td =E
0

t

dse−sA0
s2e−sA0T

. s12d

It is easy to see(e.g., diagonalizingA0) that

exps− tA0d = e−tsz/2d coshstrd5S I 0

0 I
D

+
tanhstrd

r 1
z

2
I − I

− M −
z

2
I 26 s13d

[and a similar expression follows for the transpose
exps−tA0T

d], where I is the N3N unit matrix, etc.; r
=fsz /2d2−Mg1/2 [we assume thatsz /2d2.M .0]. In this
simple case(of J;0, l=0), ast→` we have a convergence
to equilibrium(any single site is isolated) and the stationary
state is Gaussian, with mean zero and covariance
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C =E
0

`

dse−sA0
s2e−sA0T

= 1 T
M

0

0 T2 , s14d

where, again,T is a diagonal matrix with elementsTidi j (in
short, for any site we have a Gibbs measure at temperature
Ti).

To introduce the coupling interactions and the anharmonic
potential, we use a tool of the general theory of stochastic
differential equations—namely, the Girsanov theorem[12]. It
gives a measurer for the new process(7) as a “perturbation”
of the measuremC associated with the process withJ;0,
l=0. Precisely, for any measurable setA, it states that
rsAd=E0(1AZstd), where E0 is the expectation formC (the
process withJ;0, l=0), 1A denotes the characteristic func-
tion, and

Zstd = expSE
0

t

u dB−
1

2
E

0

t

u2dsD ,

gi
1/2ui = − Jikfk − lP8sfdi s15d

(the inner products above are inR2N). From Eq.(8) and the
expression above forui, note thatui is nonvanishing only for
i .N (i.e., i P fN+1,N+2, . . . ,2Ng). In what follows we will
use the following index notation:i for index values in the set
fN+1,N+2, . . . ,2Ng, j for values in the setf1,2, . . . ,Ng, and
k for values inf1,2, . . . ,2Ng.

For clearness, let us rewrite the stochastic equations for
the initial process(with J;0, l=0) as

df j = − Ajk
0 fkdt, j P f1, . . . ,Ng,

dfi = − Aik
0 fkdt + gi

1/2dBi, i P fN + 1, . . . ,2Ng, s16d

where the sum overk (in f1,2. . . ,2Ng) is assumed above(as
well as the obvious sum over some indices in what follows).

Turning to the terms inZstd we have

uidBi = gi
−1/2uigi

1/2dBi

= gi
−1/2uisdfi + Aik

0 fkdtd

= f− gi
−1Ji jf j − gi

−1lP8sfdigsdfi + Aik
0 fkdtd,

which follows from Eqs.(15) and (16) above. We still use
the Itô formula to write the terms withdfi as

− gi
−1Ji jf jdfi = − dF1 − gi

−1fiJi jAjk
0 fkdt,

F1sfd = gi
−1fiJi jf j .

With similar manipulations we obtain

Zstd ; expSE
0

t

udB−
1

2
E

0

t

u2dsD
= exph− F1„fstd… + F1„fs0d… − lF2„fstd… + lF2„fs0d…j

3expH−E
0

t

WJ„fssd…ds−E
0

t

lWl„fssd…ds

−E
0

t

lWlJ„fssd…dsJ , s17d

with

F1„fstd… = gi
−1fistdJi jf jstd, F2„fstd… = gi

−1P8sfdistdfistd,

WJ„fssd… = gi
−1fissdJi jAjk

0 fkssd + fkssdAki
0T

gi
−1Ji jf jssd

+
1

2
f j8ssdJ j8i

T gi
−1Ji jf jssd,

lWl„fssd… = lgi
−1fissdP9sfdissdAi−N,k

0 fkssd

+ lgi
−1P8sfdissdAik

0 fkssd +
1

2
l2gi

−1fP8sfdig2ssd,

lWlJ„fssd… = lgi
−1P8sfdissdJi jf jssd.

And so, for the expectations, considering the process with
coupling between sites and anharmonic perturbation, we
have, e.g., for the two-point function,

kfust1dfvst2dl =E fust1dfvst2dZstddmCsfd, t1,t2 , t.

s18d

The formula above, a Feynman-Kac-type integral repre-
sentation, is suitable for the study of generaln-point corre-
lation functions: for the analysis of their time decay(relax-
ation properties), space behavior, etc. In particular, we will
analyze the energy current in the steady state, a problem that
involves the investigation of terms such as
limt→`kfistdf jstdl; see Eq.(6).

IV. HEAT FLOW AND FOURIER’S LAW

To study the heat flow in the steady state we need to
analyze the two-point correlation functions given by formula
(6). The averages over the stationary distributions will be
obtained as the limit

kfufvl = lim
t→`

kfustdfvstdl = lim
t→`

E fustdfvstdZstddmCsfd.

We will establish the conditions for the convergence to the
steady state later.

To carry out the computation, note thatCst ,sd, given by
Eqs.(11)–(14), may be written as(for t.s)
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Cst,sd = expf− st − sdA0gC + O„expf− st + sdz/2g…,

and the effects of the second term on the right-hand side of
the equation above disappear in the correlation formula in
the limit of t→`.

For the anharmonic interaction we choose, for ease of
computation, Psfdissd=a4/4 :fi−N

4 ssd:, where the vertical

dots mean Wick order with respect to the Gaussian measure
mC.

We will make a perturbative analysis; i.e., we will assume
that the coupling between two sites,J, and the anharmonic
potential coefficientl are small. Hence, up to first order inJ
and l, after (considerable but straightforward) calculations
we have

kfufvl = 5 1

2zM
fJv+N,u−NTu−N − Ju,vTvgdu−N,v for u P fN + 1, . . . ,2Ng,v P f1, . . . ,Ng,

Tu−Ndu,v for u,v P fN + 1, . . . ,2Ng.
6 s19d

Note that we are indeed considering a system with an anhar-
monic on-site potential[see Eqs.(17) and (18)], but in the
correlation expressions(for the index sites above) the term of
orderl is zero(after the calculations).

For simplicity we will restrict the analysis of the energy
current to one-dimensional systems only. From Eq.(6) we
have

F j, = o
r. j

J j+N,rsf j − frd
sf j+N + fr+Nd

2
,

r P f1, . . . ,Ng, s20d

wherekF j,l denotes de energy flow between sitej and the
sitesr (with r . j) connected by the interactionJ. Using the
results described in Eq.(19) above we obtain

kF j,l = o
r. j

sJ j+N,rd2

2zM
sTr − Tjd. s21d

Let us analyze, in particular, the case of next-neighbor
interactions only. In such a case,

F j→ j+1 ; kF j,l =
sJ j+N,j+1d2

2zM
sTj+1 − Tjd. s22d

The conditionkdHi /dtl=0, which characterizes the sta-
tionary state, together with expressions(4) and (5) and
kRjstdl=0 [which comes from Eqs.(5) and (19)], leads to

F1→2 = F2→3 = F3→4 = ¯ = FN−1→N. s23d

I.e., using the notationJj ;sJ j+N,j+1d2/2zM,

J1sT2 − T1d = J2sT3 − T2d

= J3sT4 − T3d

= ¯

= JN−1sTN − TN−1d. s24d

It is easy to see that given the temperatures at the bound-
aries,T1 andTN, and nonvanishingJ1,J2, . . . ,JN−1, there ex-
ists a unique solutionT2,T3, . . . ,TN−1 for the linear system of

equations above Eq.(24). Namely, we obtain

Tk = T1 + S 1

J1
+

1

J2
+ ¯ +

1

JN−1
D−1S 1

J1
+

1

J2
+ ¯ +

1

Jk−1
D

3sTN − T1d, s25d

which determines the temperature profile in the steady state.
Note that it is a monotonic function, oriented in the “right”
way: the hottest temperature is near the hottest bath and vice
versa.

For the energy current we get

J1sT2 − T1d = ¯

= JjsTj+1 − Tjd

= x
sTN − T1d

N − 1
,

x

N − 1
= S 1

J1
+

1

J2
+ ¯ +

1

JN−1
D−1

; s26d

that is, Fourier’s law still holds. For the simpler case of the
same interaction between two any next-neighbor sites—i.e.
J1=J2=¯ =JN−1—we have, for the thermal conductivity,

x = J1 =
sJ1+N,2d2

2zM
. s27d

For comparison, in[10] the authors treat the linear dy-
namical problem—i.e., Eq.(7)—with l=0 and

A = S 0 − I

F zI
D ,

F = v2s− D + n2d = v2s− dr+1,j − dr−1,j + s2 + n2ddr,jd,

s28d

and obtain(in a nonperturbative approach)

x =
v2

z

1

f2 + n2 + În2s4 + n2dg
. s29d

In our case(considering the sameJ of [10]), we have
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A = S 0 − I

J + M zI
D ,

J = v2s− dr+1,j − dr−1,jd, M = Mdrj , M = v2s2 + n2d,

s30d

and so our formula(27) above becomes

x =
s− v2d2

2zs2 + n2dv2 =
v2

zs4 + 2n2d
. s31d

Considering that our computation was carried out in a per-
turbative approach with smallJ but M not small (see the
comments at the final section)—i.e., v2 small, n large—we
have in Eq.(29)

În2s4 + n2d < n2S1 +
1

2

4

n2D = n2 + 2.

That is, our computation, when restricted to the case treated
in [10], leads to the same result.

In short, we have shown(in a perturbative analysis: up to
first order inl and J) that Fourier’s law still holds for the
harmonic crystal with self-consistent reservoirs when a small
nonharmonic on-site perturbation is introduced in the inter-
action.

V. CONCLUDING REMARKS

The approach presented here establishes an integral rep-
resentation for the correlation functions—say, a Feynman-
Kac-type formalism. That is, in some sense, we map the
stochastic problem on a noncanonical field theory. Such an
approach is inspired by previous works considering the study

of the relaxation to equilibrium of some nonconservative sto-
chastic Langevin systems[13–17]. There, the time decay of
the two- and four-point functions is analyzed in detail. A
perturbative study is carried out within the integral formal-
ism in the regimes of low and high temperature. In the low-
temperature region, for the system with a weak anharmonic
potential and a bare mass(the coefficient of the local qua-
dratic term) large enough, it is proved that the perturbative
analysis is not naive: e.g., the rigorous results described in
[14] show that the complete treatment of the four-point func-
tion adds only small corrections to the behavior obtained by
the perturbative calculations presented in[13]. Using similar
techniques(cluster expansions, etc.) we expect to prove the
results about the behavior of the correlations presented here
(for smalll, nonzeroM andz, andTj not large). The pertur-
bative analysis of our system with all the reservoirs at(dif-
ferent but) high temperature(i.e., with the perturbative pa-
rameter given by 1/Tj instead of l) shall be possible
following procedures similar to those described in[16] and
references therein.

Another interesting open problem is the behavior of the
system in the limit of the coupling with the interior heat bath
taken to zero: note that, to face this problem, we must make
the coupling with the heat bath at the ends of the chain dif-
ferent from the coupling at the interior sites(to be taken to
zero), and so the formula for the thermal conductivity, Eq.
(31) (obtained for identic couplings), will change. In such a
case, as we have mentioned before(compare[6] and[7] with
[8]), it is not clear if Fourier’s law is or is not valid.
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